COPYRIGHT©廣州慧正云科技有限公司 www.hzeyun.com 粵ICP備18136962號 增值電信業務經營許可證:粵B2-20201000
Researchers have developed a new method to create effective anti-fouling coatings for medical implants. Using cation–π interactions, the coatings are quickly formed on various substrates, offering an improved solution for reducing protein, bacteria, and cell adhesion.
Anti-fouling coatings, developed using cation–π interactions, can be rapidly applied to medical implants, ensuring long-term effectiveness against biofouling. Image source: Dominik Karch - Pixabay (symbol image).
In the medical industry, reducing biofouling—the adhesion of proteins, bacteria, and cells to surfaces—is critical for enhancing the durability and functionality of implants. Traditional antifouling coatings, which are covalently bonded to substrates, are often time-consuming and dependent on the substrate material. A recent study addresses these challenges by introducing a method that rapidly forms antifouling coatings using cation–π interactions.
Block copolymers outperform random copolymers in anti-fouling performance
The study revealed that block copolymers provided superior anti-fouling properties compared to random copolymers. By increasing the ratio of PEGMA and METAC in the copolymer composition, the antifouling performance could be further enhanced. The research highlights the potential of this method for creating anti-fouling coatings with improved resistance to protein, cell, and bacterial adhesion, while offering the advantage of rapid and versatile application on a wide range of materials.
Source: Polymer Chemistry, Issue 43, 2024
慧樂居歡迎您關注中國家居產業,與我們一起共同討論產業話題。
投稿報料及媒體合作
E-mail:luning@ibuychem.com